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 Introduction

The development of one’s sex comprises ‘sex 
 determination’ – the development of the undifferen-
tiated gonad into testis or ovary during embryo-
genesis, followed by ‘sex differentiation’  –  the 
determination of phenotypic sex induced by 
 factors produced by the differentiated gonad. This 
chapter will highlight the molecular mechanisms 
underpinning these two processes.

During the first 2 weeks of human embryonic 
development, the only difference between XX and 
XY embryos is their karyotype. At the two‐cell stage 
of the XX zygote, X chromosome inactivation 
occurs, enabling males and females to have equal 
transcript levels from the X chromosome (Huynh 
and Lee 2001). In developing germ cells, the X is 
reactivated in the female, so both X chromosomes 
contribute to oogenesis (Sugimoto and Abe 2007).

 The Bipotential Gonad

During the fourth week of human development, the 
urogenital ridges develop as a thickening of the 
 mesodermic mesonephros covered by coelomic 
 epithelium (CE); it is from this structure that the uro-
genital system and adrenal cortex originate. In  the 
fifth week, or mouse embryonic day (E) 9.5–10.5, the 
urogenital ridge divides into a urinary and adreno‐
gonadal ridge the latter of which forms the gonads 
and adrenal gland (Swain and Lovell‐Badge 1999). 
Until the sixth week of human development, or 

mouse E11.5, the undifferentiated gonads of XX and 
XY individuals are identical and have the potential to 
form either ovary or testes (bipotential).

Molecular Determinants of Gonadal 
Development

A number of factors have been shown to be required 
for the development of the undifferentiated gonad, 
as illustrated in Figure  1.1. However, due to the 
 limited studies in human development, mouse 
 studies have revealed several more important 
 factors involved in gonadal development, and these 
are outlined below.

Empty spiracles homeobox 2 (Emx2)
Emx2 encodes a homeodomain transcription factor 
expressed in urogenital epithelial cells. Knockout 
mice completely lack kidneys, gonads, ureters and 
genital tracts, but the adrenal glands and bladder are 
normal (Miyamoto et al. 1997), indicating Emx2 acts 
after division of the urogenital ridge. It may regulate 
tight junction assembly, allowing migration of 
the  gonadal epithelia to the mesenchyme (Kusaka 
et al. 2010).

Paired box gene 2 (Pax2)
Pax2 is a transcriptional regulator expressed 
within  the urogenital system during development, 
in both ductal and mesenchymal components 
(Torres et al. 1995). Null mice lack kidneys, ureters, 
and genital tracts, and the Wolffian and Müllerian 
tracts degenerate.
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Transcription factor 2 (Tcf2)
The POU domain containing Tcf2 gene functions 
in  epithelial differentiation (Coffinier et  al. 1999; 
Kolatsi‐Joannou et  al. 2001). It is essential for 
 urogenital development, as patients harbouring 
mutations exhibit genital malformations (Lindner 
et al. 1999; Bingham et al. 2002).

Steroidogenic factor 1 (Sf1)/Nr5a1
The transcription factor Sf1 is expressed in the hypo-
thalamus, pituitary, gonads, and adrenal glands (Luo 
et al. 1994; Val et al. 2003). Null mice lack gonads and 
adrenal glands (Luo et al. 1994; Shinoda et al. 1995). 
Sf1 also functions later in testis development.

Wilms’ tumour 1 (Wt1)
Wt1 encodes multiple isoforms of a zinc finger pro-
tein, which act as transcriptional repressors (Menke 
et al. 1998) or activators (Lee et al. 1999). The –KTS 
variant promotes cell survival and proliferation in 
the indifferent gonad, whereas the +KTS isoform 
functions in testes differentiation (Hammes et  al. 
2001). The –KTS isoform activates the sex‐ 
determining region Y (Sry) and Sf1 promoters 
(Hossain and Saunders 2001; Wilhelm and Englert 
2002). Wt1 is expressed in urogenital ridges 
(Pritchard‐Jones et al. 1990) where it maintains the 
identity of adreno‐gonadal primordium (AGP) the 
precursor to the gonads and adrenal primordia 

(Bandiera et  al. 2013). Accordingly, null mice lack 
kidneys and gonads (Kreidberg et al. 1993).

LIM homeobox 9 (Lhx9)
Knockout of Lhx9, a homeobox protein, causes fail-
ure of gonadal development (Birk et  al. 2000) and 
synergizes with Wt1 to regulate Sf1 expression (Birk 
et al. 2000; Wilhelm and Englert 2002).

Chromobox homologue 2 (Cbx2)
Cbx2 is the mouse homologue of the Drosophila 
polycomb gene and regulates transcription by 
altering chromatin structure. Knockout XX mice 
have small or absent ovaries and XY mice show 
male–female sex reversal (Katoh‐Fukui et al. 1998). 
Cbx2 may regulate Sf1 expression in the gonad, as 
it does in the adrenal gland (Katoh‐Fukui et  al. 
2005), or it may alter Sry expression directly 
(Katoh‐Fukui et al. 2012).

CBP/p300 interacting transactivator,  
with glu/asp‐rich c‐terminal domain, 2 (Cited2)
Cited2 is a transcriptional regulator expressed in the 
AGP, and later in the CE and underlying mesen-
chyme of the genital ridge (Bhattacharya et al. 1999; 
Braganca et  al. 2003). It cooperates with Wt1 to 
stimulate Sf1 expression in the AGP (Val et al. 2007; 
Buaas et  al. 2009), and also ensures Sry levels are 
 sufficient to trigger testis determination.

Bipotential gonad

Genital ridge

FGF9

FOXL2

WNT4
RSP01SOX9

Testicular
development

Ovarian
development

–SRY+SRY

FollistatinOther male genesPGD2

Amh

Testis Ovary

Figure 1.1 Simplistic illustration of the 
molecular determinants for gonadal 
differentiation. In the presence of SRY, SOX9 
is upregulated and is responsible for the 
regulation for testicular development.  
In the absence of SRY, pro‐ovarian factors 
regulate ovarian development (see text for 
more detail).
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Gata binding protein 4 (Gata4)
Gata4 is a transcription factor first detected at E11.5 
in somatic cells of XX and XY gonads; at E13.5 it is 
upregulated in XY Sertoli cells and downregulated 
in interstitial cells and XX gonads (Viger et al. 1998). 
It is required for gonadal ridge formation (Hu et al. 
2013), along with later functions in testicular and 
ovarian development.

 Primordial Germ Cells

Specification

Primordial germ cells (PGCs), the founder cells of 
the germ cell lineage, are typically established early 
during embryonic development. Germ cell specifi-
cation can either occur through the inheritance of 
germ cell determinants already present in the egg 
(preformation), as in Drosophila melanogaster and 
Caenorhabditis elegans, or in response to inductive 
signals, as for mice and probably all mammals 
( epigenesis) (Extavour and Akam 2003; Saitou and 
Yamaji 2012).

Mouse PGCs (mPGCs) originate in the pluripotent 
proximal epiblast at about E6.0 when they respond to 
signals from extraembryonic tissues and express 
Fragilis/Interferon‐induced transmembrane protein 
3 (Ifitm3) (Saitou et al. 2002). Bone morphogenetic 
protein 4 (Bmp4) and 8b from the extraembryonic 
ectoderm and Bmp2 and wingless‐type MMTV inte-
gration site family, member 3 (Wnt3) from the vis-
ceral endoderm are critical for specification (Lawson 
et  al. 1999; Ying et  al. 2000; Ying and Zhao, 2001; 
Ohinata et al. 2009). At E6.25, about six of these cells 
express B‐lymphocyte‐induced maturation protein 1 
(Blimp1, also known as PR domain‐containing 1, 
Prdm1): these cells are PGC precursors (Ohinata 
et  al. 2005), although further cells are recruited to 
become PGCs before E7.25 (Saitou et  al. 2002; 
McLaren and Lawson 2005; Ohinata et  al. 2005). 
Wnt3 acts via β‐catenin to activate the  mesodermal 
factor T (brachyury), which in turn induces Blimp1 
and Prdm14 expression (Aramaki et al. 2013); these 
are transcriptional repressors which suppress the 
somatic program while allowing establishment of 
germ cell character (Saitou et al. 2002; Saitou et al. 
2005; Ohinata et al. 2005; Vincent et al. 2005; Yabuta 
et  al. 2006; Seki et  al. 2007; Kurimoto et  al. 2008; 
Yamaji et  al. 2008). The expression of genes which 

establish/maintain pluripotency are retained via the 
epiblast, including Sox2, Nanog, Oct4, and Embryonal 
stem cell gene 1 (Esg1) (Scholer et al. 1990; Ohinata 
et  al. 2005; Western et  al. 2005; Yamaguchi et  al. 
2005; Yabuta et al. 2006; Chambers et al. 2007).

Following establishment of the germ cell lineage, 
extensive reprogramming of the genome occurs, 
i.e. erasure of epigenetic marks such as DNA 
 methylation and establishment of new marks 
(Surani 2001; Hajkova et al. 2002). Imprinting must 
be reprogrammed in the germ line, as a maternal 
allele in one generation may be a paternal allele in 
the next. PGCs do initially acquire genome wide 
de novo methylation; however, following entry into 
the gonadal ridge, there is rapid demethylation, 
simultaneously in male and females, prior to their 
sex‐specific differentiation. The timing of erasure in 
humans is not known, but in mice it begins between 
E10.5 and E11.5, i.e. after arrival in the gonadal 
ridge (Lee et al. 2002). Remethylation occurs in XY 
germ cells once they have committed to the sper-
matogenic fate, and in XX germ cells just before 
ovulation (Hajkova 2011).

Human PGCs (hPGCs) are first identified in the 
wall of the yolk sac at 23–26 days postfertilization 
(Witschi 1946). The process of hPGC specification 
is thought to be similar to that in mPGCs, given the 
conserved expression of key regulatory genes, 
including that of OCT4, NANOG, BLIMP1, TFAP2C 
and cKIT (Anderson et al. 2007; Eckert et al. 2008; 
Kerr et al. 2008a; Kerr et al. 2008b). Human PGCs 
also undergo extensive epigenetic reprogramming 
(Gkountela et  al. 2013). However, in contrast to 
mPGCs, hPGCs do not express the key pluripotency 
transcription factor SOX2 (Perrett et  al. 2008), 
 hinting towards fundamental differences between 
human and mouse PGC specification.

Migration

At approximately E10.5 in the mouse and between 
weeks 5 and 8 of human gestation, PGCs actively 
migrate from the allantois through the gut mesen-
tery to the genital ridges of the developing gonad 
(Figure  1.2), exhibiting polarized morphology and 
extending cytoplasmic protrusions (Fujimoto et  al. 
1977; Anderson et al. 2000; Molyneaux et al. 2001). 
Again, studies in the mouse have revealed the 
involvement of a number of key molecules, which 
are also implicated hPGC migration. Thus, the c‐Kit 
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receptor tyrosine kinase on PGCs, and its ligand, 
stem cell factor (Scf ), expressed by somatic cells 
along the migratory route, are required (McCoshen 
and McCallion 1975; Buehr et al. 1993b; Merkwitz 
et  al. 2011) as well as the chemokine stromal‐cell 
derived factor 1 (Sdf1) which is released from 
somatic cells and acts on the chemokine (C‐X‐C 
motif ), receptor 4b (Cxcr4b), on the PGC surface 
(Ara et al. 2003; Molyneaux et al. 2003).

In addition, the following all interfere with PGC 
migration: knockout/mutation of β1 integrin 
(Anderson et  al. 1999), E‐cadherin (Bendel‐Stenzel 
et  al. 2000; Di Carlo and De Felici, 2000), Fgf8 
(Sun et al. 1999), Forkhead box c1 (Foxc1) (Mattiske 
et  al. 2006), Lhx1 (Tanaka et  al. 2010), Wnt5a 
(Chawengsaksophak et  al. 2012), Receptor tyrosine 
kinase‐like orphan receptor 2 (Ror2) (Laird et  al. 
2011), and the germ cell deficient (GCD) locus (Pellas 
et  al. 1991). Extracellular matrix (ECM) proteins, 
including fibronectin and laminin, also play a   role 
(Ffrench‐Constant et  al. 1991; Garcia‐Castro  et  al. 
1997). Inhibition of 3‐hydroxy‐3‐ methylglutaryl‐
coenzyme A reductase (HMGCR), involved in cho-
lesterol synthesis, reduces PGC migration (Ding et al. 
2008). Hindgut endoderm expansion is essential for 

mPGC migration (Hara et al. 2009), and the long and 
narrow genital ridge structure helps capture migrat-
ing germ cells (Harikae et al. 2013a).

Human PGC migration is less well understood. 
During the fifth week of human embryonic develop-
ment, PGCs are apparent in the genital ridges and 
gut mesentery. They migrate along nerve fibres and 
Schwann cells to reach the gonadal ridge, indicating 
that these nerve/Schwann cells release germ cell 
chemoattractants (Mollgard et al. 2010).

Upon arrival in the genital ridge, germ cells (now 
termed gonocytes) lose their motility and polarized 
morphology and associate with somatic cells (Baillie 
1964; Donovan et  al. 1986). Studies in Drosophila 
and zebrafish indicate that PGCs stop migrating at 
the site of highest chemoattractant expression (Van 
Doren et al. 1998; Reichman‐Fried et al. 2004), and 
that somatic–germ cell interactions are also required 
(Jenkins et al. 2003; Van Doren et al. 2003; Mathews 
et al. 2006).

Proliferation

A number of factors are involved in mPGC prolifer-
ation, which when ablated, cause PGC loss. Bcl‐x, an 

(a) (b) (c)

M

G

A

K

Figure 1.2 Migration of human primordial germ cells. Representation of human primordial germ cell (PGC) migration from the 
allantois to the gonadal ridge in the intact embryo (a) and through the gut mesentery within the dissected abdomen (b) at 
approximately 6 weeks after conception. The gonadal ridge (G) has developed on the medial surface of the mesonephros (M) 
adjacent to the adrenal gland (A) and superior to the kidney (K). (c) Human embryo section corresponding to (b) showing 
PGCs darkly stained for alkaline phosphatase activity in the gonad (G) and throughout the folds of the gut mesentery (arrow). 
Bar = 250 µm. Reproduced with permission of Wiley.
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anti‐apoptotic B‐cell leukemia/lymphoma 2 (Bcl2) 
family member maintains the survival of mPGCs 
(Rucker et al. 2000), Fgf2 and Fgf4 promote mPGC 
proliferation in vitro (Matsui et  al. 1992, Resnick 
et al. 1998, Kawase et al. 2004), and PGC numbers 
are reduced in Fgfr2‐IIIb knockout embryos 
(Takeuchi et al. 2005).

As well as being required for migration, Kit signal-
ling is required for germ cell growth, maturation and 
survival (Merkwitz et al. 2011). Loss of β‐catenin, a 
member of the Wnt signalling pathway, and follista-
tin (Fst), a Tgfβ family member, cause germ cell loss 
in the ovary (Yao et al. 2004; Liu et al. 2009).In addi-
tion, co‐expression of Wnt4 and Rspo1 is required 
for proliferation in the undifferentiated gonad 
(Chassot et al. 2012), as well as being involved later 
in ovarian development.

 The Internal Reproductive Tract

As well as forming the gonad, the mesonephros and 
CE also give rise to components of the internal repro-
ductive tract and urinary system, including the 
Wolffian ducts (WDs) which form the epididymides, 

vasa deferentia, and seminal vesicles in the male, 
and  the Müllerian ducts (MDs) which generate the 
Fallopian tubes, uterus, and upper vagina in the female 
(Hashimoto 2003). In the human embryo, the internal 
reproductive tract is similar in both sexes up to 8 
weeks postconception (WPC) (the indifferent stage).

The precursor of the WD (also known as the mes-
onephric duct) is the pronephric duct (Jirasek 1971; 
Hashimoto 2003), which regresses at 4 WPC and is 
replaced by the mesonephros (Seville et  al. 2002). 
The precursor of the MD, the paramesonephric 
duct, develops in parallel (Sobel et  al. 2004). The 
WD first appears as a single uteric bud, and then 
develops as a continuous tube along the urogenital 
ridge, which reaches the caudal part of the hindgut, 
the cloaca. The WD develops by mesenchymal cell 
rearrangement, rather than by cell proliferation 
(Keller et  al. 1985), involving Gata3 (Grote et  al. 
2006), Ret signalling (a receptor tyrosine kinase 
involved in glial derived neurotrophic factor signal-
ling) (Hoshi et al. 2012), Gremlin1, Bmp4 and Bmp7 
(Goncalves and Zeller 2011). The mature WD drains 
the primitive kidney, the mesonephros, to the  cloaca. 
In males and females it develops into the trigone of 
the bladder, part of the bladder wall (Figure 1.3).

Bipotential gonads

Mesonephros

Metanephric kidney

Epididymis
Testes

Ureter

Ureter
Wolffian duct
(vas deferns)

MALE FEMALE

Uinary bladder

Degenerated
mullerian duct˝

Cloaca

Uinary bladder

Mullerian duct˝

Mullerian duct
(oviduct)
˝

Wolffian duct

Degenerated
wolffian duct

Ovaries

Ureter

Uterus

Vagina

Figure 1.3 Development of gonadal and internal reproductive system in males and females. Illustrated by Phoebe Ingram.
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The MDs are paired ducts, which run down the side 
of the urogenital ridge. They arise as a thickening of 
CE cells (Zhan et al. 2006; Arango et al. 2008), which 
migrate to the WD, proliferate and elongate at the tip 
(Guioli et  al. 2007; Orvis and Behringer 2007). The 
Wolffian epithelium secretes Wnt9b, required for 
Müllerian growth (Carroll et al. 2005). MD develop-
ment also requires retinoic acid (RA) (Mendelsohn 
et al. 1994), Wnt4 (Vainio et al. 1999; Heikkila et al. 
2005), and Wnt7 which induces anti‐Müllerian recep-
tor‐II (Amhr‐II) expression (Parr and McMahon 
1998). Lim1 and Wnt7 expression is regulated by 
members of the Dachsung gene family (Davis et  al. 
2008). Knockout of Discs large homolog 1, involved in 
epithelial polarization and adhesion, causes defective 
MD development (Iizuka‐Kogo et al. 2007).

 The External Genitalia

During the third week of human development, the 
cloacal membrane is formed; this shifts caudally dur-
ing the fourth week, and by the fifth week cloacal folds 
form on either side, joining at the anterior end, the 
genital tubercle. At 7 WPC, the urorectal septum 
divides the cloacal membrane, forming the urogenital 

membrane and urethral folds at the ventral section 
(urogenital sinus), and anal membrane and folds at the 
dorsal section. The urogenital membrane then dis-
solves leaving the urogenital sinus opening (ostium) 
surrounded by labioscrotal swellings (Figure 1.4).

A number of signalling molecules are involved in 
the early patterning of the indifferent external genita-
lia. Fgf8, activated in the urethra by β‐catenin, and 
Bmps are required for genital tubercle growth and 
differentiation (Suzuki et  al. 2003, Lin et  al. 2008, 
Haraguchi et  al. 2000), while Fgf10 is required for 
glans penis and clitoridis development (Haraguchi 
et al. 2000). Sonic hedgehog (Shh) signalling plays a 
central role (Perriton et al. 2002; Klonisch et al. 2004), 
as do various homeotic (Hox) genes (Mortlock and 
Innis 1997; Warot et al. 1997; Post and Innis 1999).

 Testis Differentiation

Molecular Determinants of Testis 
Differentiation

Testis development is triggered by Sry (Lovell‐Badge 
and Robertson 1990; Koopman et al. 1991), a mem-
ber of the SOX gene family of HMG transcription 

Labioscrotal swelling

Cloacal membrane

Developing glans of clitoris

Labia minor

Perineum

Glans clitoris

Vaginal orifice

Anus
Perineum

Hymen

Urethral opening

Anus

Labia major

Genital tubercle

Urogential fold

Developing glans of penis

Primordial phallus

Urogenital membrane

Perineum

Glans penis

Anus

Urethral opening

Scrotum

Perineum

Anus

Figure 1.4 Development of external genitalia in both males and females. Illustrated by Phoebe Ingram.
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factors encoded on the Y chromosome. Sry is first 
detected in supporting cell precursors in the XY 
gonad from E10.75 (Albrecht and Eicher 2001; 
Bullejos and Koopman 2001; Sekido et  al. 2004; 
Wilhelm et al. 2005). Expression is transient (approx-
imately 4 h in each cell precursor), reaching a peak at 
E11.5 and being extinguished shortly after E12.5 
(Koopman et al. 1990; Lee and Taketo 1994; Hacker 
et al. 1995; Jeske et al. 1995; Sekido et al. 2004), its 
function being to activate transcription of Sox9, the 
so‐called master regulator of testis determination, 
approximately 10 h after Sry expression (Bullejos 
and Koopman 2005).

Regulation of Sry Expression
Gata4 activates the mouse, but not the human, Sry 
promoter (Miyamoto et al. 2008); this activation is 
enhanced via mitogen‐activated protein 3 kinase 4 
(Map3k4) activation of p38 kinase, which phospho-
rylates Gata4 (Gierl et  al. 2012; Warr et  al. 2012). 
This activation requires interaction of Gata4 with its 
cofactor, Friend of Gata4 (Fog2) (Tevosian et  al. 
2002; Manuylov et  al. 2011). Fog2 expression is in 
turn regulated by the transcription factors Six home-
obox 1 (Six1) and Six4 (Fujimoto et al. 2013), which 
also regulate Sf1 expression. Map3k4 is activated by 
Growth arrest and DNA‐damage‐inducible protein 
(Gadd45g) (Miyake et al. 2007; Gierl et al. 2012) with 
null XY mice showing sex reversal (Warr et al. 2012; 
Johnen et al. 2013). Gata6 is co‐expressed with Gata4 
in the testis (Ketola et al. 1999), with double knock-
out mice having smaller testes (Padua et  al. 2015). 
Mouse Gata6 has 85% homology with Gata4 
(Molkentin 2000) and the two are postulated to 
carry overlapping functions (Robert et  al. 2006; 
Bennett et al. 2012).

Sf1 activates the Sry promoter (de Santa Barbara 
et al. 2001; Pilon et al. 2003) and null XY gonads 
degenerate with due to lack of Sry expression (Luo 
et al. 1994). Lhx9 and Cbx2 regulate Sry expression 
indirectly via Sf1 upregulation, and Cited2 inter-
acts with Sf1 and Wt1 to increase Sry expression to 
initiate testis development. Additionally, Wt1 
directly activates the Sry promoter (Shimamura 
et al. 1997; Hossain and Saunders 2001; Miyamoto 
et  al. 2008), synergizes with Gata4 on the Sry 
 promoter (Miyamoto et al. 2008) and may stabilize 
Sry mRNA (Polanco and Koopman 2007). The 

transcription factor Sp1 also transactivates the Sry 
promoter (Desclozeaux et  al. 1998; Assumpcao 
et al. 2005).

Methylation of lysine 9 of histone H3 on the Sry 
promoter represses gene transcription (Barski 
et al. 2007), and is demethylated by lysine‐specific 
demethylase 3A (encoded by the Jmjd1a gene) 
(Kuroki et al. 2013). Jmjd1a‐null mice show XY sex 
reversal.

Sry Targets
Sox9
A threshold level of Sry expression is required to 
activate Sox9 expression in Sertoli cells (SCs), but 
only within a specific window; if this does not occur, 
either ovotestes or ovaries form (Hiramatsu et  al. 
2009; Wilhelm et al. 2009). In addition, the level of 
Sox9 expression must also reach a threshold level. 
Once expression is initiated within SCs, however, it 
remains throughout their lifetime.

Sry and Sf1 bind directly to several sites within 
the  Sox9 promoter, within a 3.2 kb testis‐specific 
enhancer (TES) or 1.4 kb of its core element 
(TESCO), present approximately 14 kb upstream 
(Sekido and Lovell‐Badge 2008). Sox9 also binds to 
this region with Sf1 to maintain its own expression. 
Sox9 is the only critical direct target of Sry, as Sox9 
expression in the XX gonad leads to male sex rever-
sal (Bishop et al. 2000; Vidal et al. 2001). Deletion of 
Sox9 interferes with sex cord development and the 
activation of male specific markers (Chaboissier 
et  al. 2004). In humans, heterozygous mutations 
cause campomelic dysplasia, with XY sex reversal 
(Foster et al. 1994; Wagner et al. 1994), and gain of 
function mutations cause XX sex reversal (Huang 
et  al. 1999). There are also more distal regulatory 
regions of Sox9 (Bagheri‐Fam et al. 2006), mutation 
of which cause XY gonadal dysgenesis (White et al. 
2011). Interestingly, mouse Sry can activate Sox9 
directly, through its C terminal polyglutamine tract, 
but this has been lost in the human, which relies on 
Sry partner protein(s) to activate Sox9 transcription 
(Zhao et al. 2014).

Pod1 (Transcription factor 21, Tcf21)
The promoter of Pod1, a basic helix‐loop‐helix 
(bHLH) transcription factor, contains Sry binding 
sites, and Pod1 promotes sex reversal of ovarian 
cells to Sertoli precursors (Bhandari et  al. 2011). 
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Null XY mice demonstrate defects in testis forma-
tion (Cui et al. 2004), indicating that Pod1 might be 
an Sry target; however it is expressed prior to Sry, 
and Pod1 knockout increases apoptosis. Its sex 
reversal effect may therefore occur because it 
represses Sf1 expression leading to Leydig cell and 
SC differentiation (Luo et  al. 1994; Tamura et  al. 
2001).

Neurotrophin 3 (Ntf3)
In the mouse testis, Sertoli‐secreted Ntf3 acts on its 
receptor Tropomyosin receptor kinase C (TrkC) to 
promote mesonephric cell migration (Cupp et  al. 
2003), and Sry activates the Ntf3 promoter (Clement 
et  al. 2011). TrkC‐null mice show defective testis 
cord formation (Cupp et al. 2002).

Cerebellin 4 precursor gene (Cbln4)
Another direct target of Sry and Sox9 is Cbln4 
(Bradford et al. 2009), although the function of this 
secreted protein is unknown.

Sox9 Targets
Fgf9 and Prostaglandin D2 (Pgd2)
As well as acting on its own promoter, Sox9 upreg-
ulates the expression of Fgf9 and prostaglandin D2 
(Pgd2) synthase, creating feedforward loops which 
also maintain Sox9 expression. Pgd2 induces Sox9 
expression and nuclear import in neighbouring 
cells (Wilhelm et  al. 2005; Malki et  al. 2005; 
Wilhelm et al. 2007; Moniot et al. 2009). Via inter-
action with its receptor Fgfr2, Fgf9 maintains Sox9 
and downregulates Wnt4 expression (Kim et  al. 
2006; Kim et al. 2007). Fgf9‐ or Fgfr2‐null XY mice 
demonstrate complete or partial sex reversal, 
respectively (Colvin et  al. 2001; Kim et  al. 2007; 
Bagheri‐Fam et al. 2008), and Fgf9 causes prolifera-
tion of SC precursors (Schmahl et  al. 2004; Kim 
et al. 2006).

Anti‐Müllerian hormone (AMH)
Sox9 upregulates the expression of AMH, secreted 
from SCs and involved in the development of the 
internal reproductive tract (Arango et  al. 1999; 
Lasala et al. 2011).

Sox Family Members
Sox8 is upregulated by Sox9 (Chaboissier et al. 2004) 
and cooperates with Sf1 to activate AMH transcrip-

tion (Schepers et  al. 2003). In addition, Sox3 and 
Sox10 are expressed in the mouse testis, and all three 
Sox proteins interact with Sf1 to maintain Sox9 
expression (Sutton et  al. 2011; Sekido and Lovell‐
Badge, 2013). Later in development Sox8 and Sox9 
synergize to promote basal lamina integrity of testis 
cords and suppress Forkhead box L2 (Foxl2) expres-
sion (Georg et al. 2012).
Other Factors Involved in Testis Differentiation
The chromatin remodeller ATRX (α‐thalassemia 
and mental retardation associated with the X chro-
mosome) functions in human sexual differentiation 
(Tang et  al. 2004), with mutations causing 
gonadal and urogenital defects (Reardon et al. 1995). 
Mutations in testis‐specific protein Y‐like‐1 
(TSPYL1), another chromatin modifier, cause sud-
den infant death with dysgenesis of the testis in 
males (SIDDT) (Puffenberger et al. 2004), along with 
other disorders of testicular development (Vinci 
et  al. 2009). The transcription factor Mamld1 
(Mastermind‐Like Domain‐Containing Protein 1) 
activates the transcription of a noncanonical Notch 
target gene hairy/enhancer of split 3 (Hes3) and 
 augments testosterone production, likely regulated 
by Sf1 (Fukami et al. 2008).

Dmrt1 (Doublesex and mab‐3 related transcrip-
tion factor 1) maintains mammalian testis differen-
tiation throughout development and postnatally 
(Matson et al. 2011; Minkina et al. 2014). It deter-
mines sex in a number of nonmammalian verte-
brates (Matsuda et al. 2002; Yoshimoto et al. 2008; 
Smith et al. 2009), but is dispensable in mammals, in 
which it has been replaced by Sry (Raymond et al. 
2000). However, overexpression in mouse XX 
gonads causes sex reversal (Zhao et al. 2015), indi-
cating it has retained its ability to trigger testis 
differentiation.

Duplication of the dosage sensitive sex reversal 
region on the X chromosome, encoding the tran-
scription factor Dax1, causes sex reversal in XY 
patients (Bardoni et  al. 1994; Swain et  al. 1998). 
However, mutation in XX gonads does not prevent 
ovary development (Yu et  al. 1998), and further 
investigations indicate that Dax1 is required 
for  development of both the ovary and testis 
(Ludbrook and Harley 2004).

As well as transcription factors, signalling mole-
cules are involved in initiating the early stages of 
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testis differentiation. Loss of function mutations in 
the insulin receptor, the insulin‐like growth factor 
receptor (Igf1r), and the insulin‐related receptor 
result in reduced Sry expression (Nef et  al. 2003; 
Pitetti et al. 2013). However, these factors affect cell 
proliferation, which can cause XY ovary formation 
(Schmahl and Capel 2003). Male Desert Hedgehog 
(Dhh)‐null mice are sterile with reduced spermato-
genesis (Bitgood and McMahon 1995), possibly due 
to decreased germ cell survival (Makela et al. 2011; 
Sahin et  al. 2014). Dhh is secreted by SCs and its 
receptor Patched homologue 1 (Ptch1) is expressed 
by the interstitium, and also positively regulates 
fetal Leydig cell differentiation (Yao et  al. 2002). 
In  addition, palmitoyl‐transferase hedgehog acyl‐
transferase (Hhat) is involved in testis cord 
 formation and fetal Leydig cell differentiation 
(Callier et al. 2014).

Cord Formation

Testis cord formation is initiated by the clustering 
of pre‐SCs around germ cells, first evident as 
‘proto‐cords’ in the mouse testis at 12 days post-
conception (DPC) and 7 WPC in the human 
(Francavilla et  al. 1990; Heyn et  al. 2001). Within 
24 h in the mouse, definitive cords have formed 
(Nel‐Themaat et  al. 2009; Combes et  al. 2009a), 
made up of germ cells surrounded by epithelialized 
SCs (Nel‐Themaat et al. 2011), encased by peritu-
bular myoid cells (PMCs, smooth muscle) and 
ECM (Maekawa et  al. 1996; Skinner et  al. 1985). 
This boundary tissue is termed lamina propria, and 
also contains myofibroblasts in humans (Davidoff 
et  al. 1990; Dym 1994; Holstein et  al. 1996). The 
cords elongate, causing expansion of the gonad, 
eventually forming the ‘spaghetti’‐like network of 
tubules seen in the mature adult testes (Combes 
et al. 2009a; Nel‐Themaat et al. 2009). A protective 
layer of fibrous tissue surrounds the testes. The 
main component is the tunica albuginea, formed 
due to basement membrane deposition just beneath 
the CE (Carmona et al. 2009), plus smooth muscle 
(Langford and Heller 1973) and  contractile cells 
(Middendorff et  al. 2002). Its rhythmic contrac-
tions regulate blood flow, sperm movement, and 
intertesticular pressure (Ohanian et  al. 1979; 
Banks et al. 2006).

Pre‐SCs originate from the CE and express Sry, 
which induces their differentiation to primitive SCs 
(Karl and Capel 1998; Albrecht and Eicher 2001; 
Bullejos and Koopman 2001), which are Sox9, Amh 
and Dhh positive (Josso et al. 1993; Morais da Silva 
et al. 1996; Park et al. 2005). The molecular mecha-
nisms underpinning cord formation are not clearly 
understood, but involve Sertoli‐derived nerve 
growth factor 3 and its receptors Ntrk1 and Ntrk3 
(Russo et  al. 1999; Cupp et  al. 2000; Levine et  al. 
2000), involved in forming adhesive cell contacts 
(Cupp et al. 2002,; Gassei et al. 2008), and Fgf9 dif-
fusion (Hiramatsu et  al. 2010). Tgfβ, activin, and 
inhibin b signalling also play a role (Yao et al. 2006; 
Memon et  al. 2008; Sarraj et  al. 2010; Liu et  al. 
2010; Miles et al. 2013). Germ cells themselves do 
not provide the trigger for cord formation, as cords 
develop normally in XY gonads without germ cells 
(Merchant 1975; McCoshen 1982; McCoshen 1983; 
Escalante‐Alcalde and Merchant‐Larios 1992). 
In contrast, germ cell progression through meiosis 
is essential for ovarian development (Adams and 
McLaren 2002).

Vascularization of the gonadal ridge, the forma-
tion of the major coelomic vessel and interstitial 
microvasculature, is crucial for cord formation 
(Cool et al. 2008; Coveney et al. 2008; Brennan et al. 
2002; Combes et al. 2009b). Migration of vascular 
endothelial cells requires endothelial expressed 
platelet‐derived growth factor B (PDGF‐B) and 
mesenchymal expressed vascular endothelial 
growth factor A (VEGF‐A) (Brennan et  al. 2003; 
Bott et al. 2006; Cool et al. 2011). Yolk sac derived 
macrophages also mediate vascular reorganization 
(DeFalco et al. 2014).

Mesonephric cell migration into the gonad is also 
necessary for cord formation (Buehr et  al. 1993a; 
Martineau et  al. 1997; Tilmann and Capel 1999), 
the cells of which contribute to the Leydig and 
endothelial cell populations (Martineau et al. 1997; 
Merchant‐Larios and Moreno‐Mendoza 1998). 
Cell migration requires pre‐SCs lying beneath 
the  CE (Tilmann and Capel 2002) and Fgf9 
(Colvin et al. 2001).

Germ Cells

Human PGC number increases rapidly in the testis 
from ~3000 at 6 WPC to ~30 000 at 9 WPC (Bendsen 
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et al. 2003). At around 41–44 days postconception, 
between E12.5 and E14.5 in the mouse, PGCs begin 
to enter mitotic arrest in G0/G1 as prospermatogo-
nia, associated with SC differentiation and testicular 
cord formation (Gondos and Hobel 1971; Western 
et al. 2008), resuming mitosis after birth (McLaren 
1984), with meiosis delayed until well after birth 
(McLaren 1988). Mitotic arrest is induced by expres-
sion of the cell cycle regulator retinoblastoma 1 
(Spiller et al. 2010).

Somatic Factors Acting on XY Germ Cells
The chromosomal make‐up of germ cells does 
not influence their sex differentiation, XX germ cells 
in the testis will differentiate to spermatogonia, 
whereas XY germ cells in the ovary develop into 
oogonia (McLaren 2000), demonstrating that 
somatic secreted factors play a determining role.

RA is secreted from the mesonephros in XX and 
XY gonads (Bowles et al. 2006), and somatic cells in 
the testis (Bowles et al. 2009) due to expression of 
retinaldehyde dehydrogenases (ALDHs). Meiosis in 
the fetal testis is antagonized by Fgf9 expression, 
which reduces the responsiveness of germ cells to 
RA (Barrios et al. 2010; Bowles et al. 2010) and Sox9/
Sry‐induced expression of Cyp26b1 (Bowles et  al. 
2006; MacLean et al. 2007; Kashimada et al. 2011b), 
a P450 enzyme that degrades RA. The human fetal 
testis, however, may respond to RA, as RA receptors 
are present but CYP26B1 is absent (Cupp et al. 1999; 
Childs et  al. 2011). Fgf9 also prolongs germ cell 
pluripotency by stimulating the expression of the 
Nodal coreceptor Cripto (Bowles and Koopman 
2010; Spiller et al. 2012). Fsh promotes the survival 
of germ cells (Meachem et al. 2005), and Tgfβ and 
Activin A regulate quiescence (Moreno et al. 2010; 
Mendis et al. 2011).

Leydig Cells

The androgen producing cells of the testis, the 
Leydig cells, are found within the interstitial com-
partment at around 8 WPC in the human testis 
(Codesal et  al. 1990). However, their origin is 
unknown (Griswold and Behringer 2009; DeFalco 
et  al. 2011; Barsoum et  al. 2013). Their initial 
 differentiation is induced by SC‐derived PDGF 
binding to the PDGFRα (Brennan et al. 2003), the 

paracrine action of Dhh (Barsoum et  al. 2009; 
Huang and Yao 2010) and Notch signalling (Tang 
et al. 2008). Human fetal testosterone production is 
detectable by 9 weeks, peaks between weeks 15 and 
16, before dropping sharply (Reyes et  al. 1974). 
Initial androgen production does not require 
 gonadotrophin stimulation (Word et  al. 1989) but 
placental‐derived human chorionic gonadotrophin 
(hCG) and, in the third trimester, fetal pituitary 
luteinizing hormone (LH), regulate final differentia-
tion and androgen production (Rabinovici and Jaffe 
1990; Mendis‐Handagama 1997).

Male Differentiation of the Internal 
Reproductive Tract

Leydig cell‐derived testosterone and insulin‐like 
growth factor 3 (Insl3) cause WD stabilization and 
differentiation into the epididymis, vas deferens, 
and  seminal vesicle, masculization of the external 
genitalia, and testicular descent (Nef and Parada 
1999; Klonisch et  al. 2004; Hannema and Hughes 
2007; Feng et al. 2009; Ivell and Anand‐Ivell 2011).
Insl3 controls the first, transabdominal phase of tes-
ticular descent, by stimulating gubernaculums testis 
development (Kumagai et  al. 2002). Testosterone 
is  converted to dihydrotestosterone (DHT) by 5α‐
reductase, which has a higher affinity for the andro-
gen receptor (AR) and thus is a more potent driver of 
external genitalia and prostate development (Wilson 
et  al. 1981; Imperato‐McGinley and Zhu 2002). In 
addition, the testis itself produces DHT via a testos-
terone‐independent pathway (Wilson et  al. 2002). 
The AR translocates to the nucleus upon stimulation 
and binds to androgen response elements to regulate 
gene transcription (Roche et  al. 1992; Jenster et  al. 
1993). androgens are responsible for the inguino-
scrotal phase of testicular descent (Su et al. 2012) and 
the disappearance of the cranial suspensory ligament 
(van der Schoot and Elger 1992).

The MDs regress at around 8 WPC due to apopto-
sis (Roberts et al. 1999; Allard et al. 2000), in turn, 
due to Sertoli‐derived AMH (Josso et al. 2006, Josso 
et  al. 2012). AMH is a member of the Tgfβ family 
(Cate et al. 1986), whose expression is triggered by 
Sox9 (Arango et al. 1999), increased by Sf1, Gata4, 
and Wt1 (Watanabe et  al. 2000; Hossain and 
Saunders 2003; Viger et al. 2008), and stimulated by 
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Fsh postnatally (Al‐Attar et al. 1997; Lukas‐Croisier 
et al. 2003; Young et al. 2005).

Male Differentiation of the External 
Genitalia

Up to around 9 WPC, the external genitalia remain 
undifferentiated (Jirasek 1977). The genital tubercle 
elongates to form the penis in males, beginning around 
9 WPC by lengthening of the angogenital distance 
(Jirasek 1977). Part of the cloacal folds form the uro-
genital folds, which surround the urogenital ostium 
laterally. Fusion of the labioscrotal folds occurs, form-
ing the epithelial seam of the scrotum (Baskin et al. 
2001). The proximal urethra forms by fusion of the 
urethral folds around the urethral plate, and the distal 
urethra arises from an invagination of the apical ecto-
derm. The urethral folds fuse in the midline convert-
ing the urethral groove into the penile urethra, which 
is formed by 14 WPC; however, there is no difference 
in penile and clitoral size until 14 WPC (Feldman and 
Smith 1975; Zalel et al. 2001). The third trimester sees 
maximal phallic growth, curiously at a time when tes-
tosterone levels are declining (Winter et  al. 1977; 
O’Shaughnessy et al. 2007)

The urogenital sinus is the precursor to the blad-
der, urethra, and prostate and is formed in response 
to androgens on E13.5 (approx. 6 WPC) as cylindri-
cal gut endoderm surrounded by mesenchyme 
(Goldstein and Wilson 1975; Cunha and Lung 1978). 
Up to around 9 WPC, it remains undifferentiated. 
Solid epithelial outgrowths (prostatic buds) form by 
E16.5 in the mouse, or 10 WPC in the human (Cunha 
et al. 1987). There is a period of quiescence in the 
human, until puberty, when increased androgen 
 levels promote prostatic growth, forming the com-
plex ductal network of the prostatic gland (Glenister 
1962; Berry et  al. 1984). The prostatic utricle 
forms  –  the male equivalent of the vagina, as 
an   epithelial‐lined diverticulum of the prostatic 
 urethra – it serves no function (Glenister 1962).

 Ovarian Differentiation

Ovarian development is generally considered to be 
the default pathway (Jost 1947; Burgoyne 1988; 
Goodfellow and Darling 1988), occurring in the 
absence of Sry expression and the presence of Wnt4, 

Fst, and Foxl2 (Tevosian 2013). Ovarian development 
involves germ cell meiosis and apoptosis, granulosa 
cell differentiation, and primordial  follicle formation.

Germ Cells

Survival and Proliferation
Deleted in AZoospermia (Dazl)
The RNA‐binding protein Dazl is one of the first 
 factors expressed by PGCs required for ovarian 
development. It is detected shortly after PGC migra-
tion (Cooke et al. 1996) and knockout causes oocyte 
loss at the time of meiotic entry (McNeilly et  al. 
2000). It is thought to enable the gonads to respond 
to ovarian cues (Gill et al. 2011).

Factor in Germ Line α (Figlα)
Figlα is a transcription factor expressed by oocytes 
from E13 (Liang et  al. 1997), required for germ 
cell  survival and primordial follicle formation 
(Soyal et al. 2000; Lei et al. 2006).

Wnt4
In the absence of Sry, Wnt4 is expressed in the 
female gonad from E12.5 (Heikkila et al. 2005) and 
represses Fgf9 and Sox9 expression and stabilizes 
β‐catenin (Kim et al. 2006), as well as upregulating 
Dax1, which antagonizes Sf1 and thereby inhibits 
steroidogenic enzymes (Jordan et al. 2001). Wnt4 is 
required for female germ cell survival (Yao et  al. 
2004) and null XX embryos exhibit masculinized 
gonads (Vainio et al. 1999). It prevents the produc-
tion of steroids and the formation of the male‐ 
specific coelomic blood vessels by preventing the 
binding of β‐catenin to Sf1 sites on steroidogenic 
genes (Jeays‐Ward et al. 2003; Jordan et al. 2003).
R‐spondin1 (Rspo1)
Rspo1 is essential for ovarian development in sev-
eral vertebrate species, and upregulates Wnt4 in a 
cooperative manner to increase β‐catenin and Fst 
levels (Yao et al. 2004; Parma et al. 2006; Chassot 
et  al. 2008; Kim et  al. 2008; Smith et  al. 2008; 
Tomizuka et  al. 2008). β‐catenin then activates 
Wnt4 expression in a positive feedback loop 
(Chang et  al. 2008). Rspo1 knockout impairs 
 ovarian development, but does not cause sex 
reversal (Chassot et al. 2008; Tomizuka et al. 2008), 
and overexpression does not perturb testis 
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 differentiation (Buscara et al. 2009). Rspo1 stimu-
lates germ cell proliferation, and with Wnt4 
 regulates germ cell entry into meiosis (Naillat et al. 
2010; Chassot et al. 2011) and maintains pregranu-
losa cell quiescence (Maatouk et al. 2013). Human 
RSPO1 is upregulated between 6 and 9 WPC, 
and  augments β‐catenin signalling (Tomaselli 
et al. 2011).

β‐catenin regulates germ cell fate, possibly by 
 regulating cell–cell adhesion (Fleming et  al. 2012) 
along with Wnt4 (Naillat et al. 2010). It prevents Sf1 
binding to the Sox9 TESCO enhancer, inhibiting 
Sox9 expression and SC differentiation (Bernard 
et  al. 2012). It also induces Fst expression, which 
represses Activin B thus inhibiting endothelial cell 
migration and coelomic vessel formation (Yao et al. 
2004; Yao et al. 2006).

Ablation of Rspo1, Wnt4 and β‐catenin causes 
development of seminiferous tubules in XX gonads 
(Chassot et al. 2008), indicating that the three genes 
together are required to suppress the male pathway.

Fst
Fst acts downstream of Wnt4 to promote germ cell 
survival (Yao et al. 2004), and knockout causes infer-
tility (Kimura et al. 2010; Kimura et al. 2011). Wnt4 
is required to initiate, but not maintain, Fst expres-
sion; this requires Bmp2 and Foxl2 (Kashimada et al. 
2011a). Bmp2 is expressed in the gonad at E12.5 
(Yao et al. 2004), but its role in ovarian development 
is unknown.

Gata4‐Fog2 interaction
The Gata4 and Fog2 interaction, required for testis 
formation, is also required for early ovarian differen-
tiation, with knockout resulting in multiple defects 
including reduced Fst, Wnt4, and Foxl2 expression 
(expression of Sf1 is not affected) (Manuylov et al. 
2008). The Gata4‐Fog2 complex serves as a repres-
sor of Dickkopf Wnt signalling pathway inhibitor 1 
(Dkk1), which inhibits β‐catenin signalling.

Meiosis
Between 10.5 and 13.5 DPC in the mouse ovary, 
mitotic germ cells (oogonia) develop as clusters of 
interconnected cells, termed germ cell cysts (Pepling 
and Spradling 1998). Cyst formation occurs due to 
incomplete mitosis, with daughter germ cells 
remaining connected to one another by intercellular 

bridges (McKearin and Ohlstein 1995). Whilst 
within these cysts, germ cells lose expression of 
Oct4 (Pesce et al. 1998) and enter meiosis, at around 
E13.5 in the mouse, and approximately 12 WPC in 
the human (Gondos and Hobel 1971). The intercel-
lular bridges breakdown and the oocytes become 
enclosed within ovigerous cords, forming ‘pregranu-
losa cells’ surrounded by a basal lamina (Odor and 
Blandau 1969; Gondos 1987; Pepling and Spradling 
1998). There are two waves of pregranulosa cell 
recruitment from the surface epithelium; one just 
before sexual differentiation and the second imme-
diately postbirth during follicle formation (Harikae 
et al. 2013b).

RA binding to its receptor causes meiotic entry of 
germ cells, stimulated by retinoic acid gene 8 (Stra8) 
gene expression (Baltus et  al. 2006; Koubova et  al. 
2006; Childs et al. 2011). Stra8 functions in premei-
otic DNA replication and chromosome cohesion 
and synapsis (Baltus et al. 2006). Sycp1 (Synaptonemal 
complex protein 1) (de Vries et  al. 2005), Sycp3 
(Di  Carlo et  al. 2000; Yuan et  al. 2002) and Rec8 
(yeast meiotic recombination protein Rec8 homo-
logue) (Prieto et al. 2004) are then expressed, which 
are involved in the formation of the meiotic synap-
tonemal and cohesion complexes respectively, mark-
ing the beginning of prophase I. Germ cells that do 
not undergo cell death progress through leptonema, 
zygonema, pachynema, and diplonema, entering a 
prolonged arrest stage termed dictyate around the 
time of birth (Borum 1961; Borum 1967; Speed 
1982). They remain in this stage until just before 
ovulation, when they complete the first meiotic divi-
sion, begin the second, and arrest again; meiosis is 
completed only at fertilization.

Germ cells enter meiotic prophase at about the 
same time even if outside the genital ridge (Zamboni 
and Upadhyay 1983; McLaren 1995; Chuma and 
Nakatsuji 2001); thus the default pathway for a germ 
cell is to develop as an oocyte, unless it is within the 
male genital ridge.

Apoptosis
At around 20 WPC, germ cell cysts break down 
forming primordial follicles, i.e. individual oocytes 
surrounded by a layer of squamous granulosa 
( follicular) cells with an underlying layer of base-
ment membrane (Pepling and Spradling 2001; 
Hummitzsch et al. 2013). Only one third of oocytes 
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form primordial follicles, the rest die (McGee et al. 
1998; Pepling et al. 2010), either by Bcl2‐dependent 
apoptosis (Felici et  al. 1999; Yan et  al. 2000) or 
autophagy (Rodrigues et  al. 2009). There are two 
waves of apoptosis in the fetal mouse; the first 
 coincides with entry to meiosis (E13.5‐15.5) and the 
second with primordial follicle assembly (E17.5 to 
postnatal day 1) (Coucouvanis et  al. 1993; Ratts 
et al. 1995).

In the human, apoptosis occurs primarily between 
14 and 28 WPC (Vaskivuo et  al. 2001). Human 
females are unable to produce oocytes beyond 34 
WPC. The fetus is born with two million oocytes, 
which declines to 400 000 at puberty and 400 by ovu-
lation. Only a few follicles develop to preovulatory 
follicles, and thus only a few oocytes undergo ovula-
tion, with the majority of follicles and oocytes 
degenerating before ovulation (Baker 1963). Primary 
follicles are first detected around 15–16 weeks, and 
Graafian follicles around 23–24 weeks (Pryse‐Davies 
and Dewhurst 1971; Reynaud et al. 2004).

Granulosa Cell Differentiation 
and Primordial Follicle Formation

Transcription Factors
Forkhead box L2 (Foxl2) is a member of the  forkhead 
box gene family, whose expression is stimulated by 
Rspo1 and β‐catenin (Manuylov et al. 2008; Auguste 
et  al. 2011). It is one of the earliest granulosa cell 
markers, detected around E11.5 (Wilhelm et  al. 
2009), and required for granulosa cell differentia-
tion and the development of primary follicles 
(Schmidt et  al. 2004; Uda et  al. 2004; Ottolenghi 
et al. 2005). Foxl2 directly acts on the Sox9 TESCO 
enhancer to repress Sox9 expression (Uhlenhaut 
et al. 2009) and represses Sf1 expression by antago-
nizing Wt1‐KTS (Takasawa et  al. 2014). It also 
 promotes germ cell survival (Uhlenhaut et al. 2009). 
While Rspo1 and Wnt4 regulate ovarian develop-
ment cooperatively, Wnt4 and Foxl2 operate 
through independent, but complementary, path-
ways (Ottolenghi et  al. 2007; Schlessinger et  al. 
2010). When Wnt4 or Foxl2 is knocked‐down, the 
other is still expressed (Ottolenghi et  al. 2007; 
Chassot et al. 2008; Manuylov et al. 2008), and each 
regulate distinct sets of genes (Garcia‐Ortiz et  al. 
2009). Ablation of both Foxl2 and Wnt4 causes tes-
tis differentiation in XX mice. However, the reversal 

is incomplete, with ovarian somatic cells and 
oocytes remaining (Ottolenghi et al. 2007).

Despite the complicated interplay between Rspo1, 
Wnt4, β‐catenin, and Foxl2 in establishing and 
maintaining the ovary, the gonad is surprisingly 
plastic. Loss of Dmrt1 expression in SCs activates 
Foxl2 and reprograms them to granulosa cells 
(Matson et al. 2011). In contrast, Dmrt1 expression 
in the ovary silences Foxl2 and reprograms granu-
losa cells to SCs (Lindeman et al. 2015).

Both Gata4 and Gata6 are required later, inde-
pendently of the Fog2 interaction for granulosa cell 
proliferation and differentiation, and thus primor-
dial follicular development (Bennett et  al. 2012; 
Padua et  al. 2014). Gata4 granulosa cell‐specific 
knockout mice are subfertile, whereas Gata6 knock-
outs have no reproductive defects (Kyronlahti et al. 
2011; Bennett et  al. 2012), indicating that Gata4 
plays a more substantial role (Bennett et al. 2013).

Newborn ovary homeobox protein (Nobox), 
 spermatogenesis, and oogenesis specific bHLH 1 
(Sohlh1) and Sohlh2 are critical transcription fac-
tors required for the primordial to primary follicle 
transition (Rajkovic et  al. 2004; Choi et  al. 2008b; 
Bouilly et al. 2014). Nobox is expressed in the oocyte 
and granulosa cells; it inhibits Foxl2 activation of its 
own promoter (Bouilly et al. 2014), and upregulates 
the Growth differentiation factor 9 (Gdf9) promoter 
(Bayne et  al. 2015). Sohlh1 and 2 are expressed in 
oocytes (Ballow et al. 2006; Pangas et al. 2006), and 
knockout reduces Nobox and Lhx8 expression 
(Pangas et al. 2006; Choi et al. 2008b). Lhx8 is also 
expressed in oocytes and involved in folliculogenesis 
(Choi et al. 2008a).

Signalling Molecules
Tgfβ and Notch signalling are involved in cyst break-
down and primordial follicle formation. Bmp15 and 
Gdf9 play a synergistic role in stimulating primary 
follicle development (Yan et al. 2001), and Activin A 
increases germ and granulosa cell proliferation 
(Bristol‐Gould et al. 2006). In addition, Fst is required 
for germ cell cyst breakdown and primordial follicle 
formation (Kimura et  al. 2011). Finally, AMH is 
expressed in postnatal granulosa cells and inhibits 
primordial follicle growth (Baarends et  al. 1995; 
Durlinger et al. 2002; Nilsson et al. 2011). Mutation 
of the Notch signalling regulator, lunatic fringe, 
causes aberrant folliculogenesis (Hahn et  al. 2005), 
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and suppression of Notch signalling decreases pri-
mordial follicle formation (Trombly et al. 2009).

Neurotrophins (Ntfs) are also involved in follicle 
formation. Nerve growth factor and the neurotro-
phin tyrosine kinase receptors 1 and 2 (Ntrk1 and 2) 
are required for the primordial follicle growth 
(Dissen et al. 2001; Kerr et al. 2009), and Ntf4 and 
Brain‐derived neurotrophic factor (Bdnf) promote 
oocyte survival (Spears et al. 2003).

Female Differentiation of the Internal 
Reproductive Tract

Female differentiation of the internal reproductive 
tract involves the loss of the WDs at 13 WPC, due to 
the absence of androgens, and persistence of the 
MDs, in the presence of oestrogen. The proximal 
part of the ducts form the Fallopian tubes and the 
distal portion forms the uterus, cervix, and upper 
vagina (Orvis and Behringer 2007). The uterine 
endometrium develops as an epithelial tube and the 
myometrium develops from surrounding mesen-
chyme; both are fully differentiated by 20 WPC 
(Arango et  al. 2008). The uterovaginal canal is 
formed by 22 WPC, and the vaginal epithelium 
is  formed from the vaginal plate, which originates 
from the urogenital sinus, over the next 2 months 
(Fritsch et al. 2013).

Female Differentiation of the External 
Genitalia

The genital tubercle lengthens and then retracts, 
and after 14 WPC, the clitoris becomes visible. The 
lower end of the vagina opens onto the perineum 
surface at 22 WPC. The remainder of external 
 genitalia development in the female is fairly benign, 
unlike the male. The genital swellings do not fuse, 

forming the labia majora, fusing at the front (mons 
pubis) and the rear (commissure of the labia), and 
the urogenital sinus remains wide open, with the 
urethra in the anterior part and the vagina in 
the  posterior part. The urethral folds do not fuse, 
but form the labia minora.

Genetic and Hormonal Control of Female 
Differentiation

The use of knockout mice has revealed a number of 
factors essential for female development. Vaginal 
and cervical development requires Wnt5A (Suzuki 
et  al. 2003; Mericskay et  al. 2004), Pax8‐null mice 
lack a vaginal opening or uterus (Mittag et al. 2007) 
and Van Gogh‐like 2 (Vangl2), a protein involved in 
regulating cell polarity, also regulates vaginal open-
ing (Kibar et  al. 2001). The development of the 
female reproductive tract is regulated by oestrogens, 
acting on ERα and ERβ. ERα is expressed in the 
uterus, vagina, and thecal cells, whereas ERβ is 
expressed in granulosa cells (Couse and Korach 
1999; Muramatsu and Inoue 2000).

 Conclusion

This chapter has described sexual development and 
determination during embryogenesis, highlighting 
the key regulatory genes and molecules involved in 
the process. While much of this information has 
been gleaned from the mouse, and is likely to be 
applicable to the human, a number of key differ-
ences between the species exist, for example the 
absence of SOX2 in hPGCs and the lack of CYP26B1 
expression and Gata4 Sry regulation in the human 
testis, highlighting the need for further work before 
these processes in humans are fully elucidated.
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